Stefan-type free boundary problems for heat equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions

We present a novel and efficient method for solving the Poisson equation, the heat equation, and Stefan-type problems with Robin boundary conditions over potentially moving, arbitrarily-shaped domains. The method utilizes a level set framework, thus it has all of the benefits of a sharp, implicitly-represented interface such as the ease of handling complex topological changes. This method is st...

متن کامل

Free Boundary Problems for Parabolic Equations

An address delivered at the Ann Arbor meeting of the American Mathematical Society on November 29, 1969, by invitation of the Committee to Select Hour Speakers for Western Sectional Meetings; received by the editors April 9,1969. AMS 1969 subject classifications. Primary 3562, 3578.

متن کامل

Boundary value problems for Dirac–type equations

We prove regularity for a class of boundary value problems for first order elliptic systems, with boundary conditions determined by spectral decompositions, under coefficient differentiability conditions weaker than previously known. We establish Fredholm properties for Dirac-type equations with these boundary conditions. Our results include sharp solvability criteria, over both compact and non...

متن کامل

Nahm’s equations and free boundary problems

In [4], following up work of Hitchin [9], the author found it useful to express Nahm’s equations, for a matrix group, in terms of the motion of a particle in a Riemannian symmetric space, subject to a potential field. This point of view lead readily to an elementary existence theorem for solutions of Nahm’s equation, corresponding to particle paths with prescribed end points. The original motiv...

متن کامل

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1973

ISSN: 0034-5318

DOI: 10.2977/prims/1195192440